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The guldance scheme analyzed for the atmosphere entry phase__ _

mission is based upon the linear theory of perturbations about a nominal or
reference trajectory. The scheme differs from the classical linear theory
primarily through the use of empirically determined weighting factors. The
guidance shceme uses a single nominal trajectory to make it simple and easy to
store for use by the on-board computer.

It is shown that this guidance scheme, when applied to a typical
(L/D)max = 0.4, roll modulated vehicle, could provide accurate guidance over
ranges from 1, 500 to 12,000 statute miles for entry angles which include vir-
tually all of the vehicle s capability.

Results are also presented for the effects on guldance capability of
certain off-design conditions; namely, the effects of reentries from selected
abort conditions, the effects of variations in lift-drag ratio, and the effects

of atmospheric density deviations. "
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The guidance of aerospace vehicles requlires information regardlng the

future consequences on the vehicle trajectory of a given control sction. This
information is predictable through the solution of the equations of state
(equations of motion). Schemes which have been proposed for aerospace vehicle
guidance can be loosely classified according to the manner in which these solu-
tions are obtained. Most schemes fall into one of three broad categories,
namely:

(1) Exact numerical solutions of the nonlinear equations of state.

(2) Approximate closed-form analytical solutions of the equations
of state.

(3) Approximate numerical solutions in the neighborhood of an exact
precomputed numerical solution (nominal trajectory) of the equa-
tions of state.

Examples of guidance schemes representative of the first two categories
are given in references 1 and 2, respectively. The present report will be con-
cerned with the guidance concept corresponding to category (3). This concept
of guidance about a nominal trajectory has received considerable attention. It
has been investigated for use both in the midcourse phase of the lunar mission




and for the atmosphere reentry phase (e.g., refs. 3 to 6). The restriction to
the neighborhood of the nominal trajectory forms the primary limitations on the
range of applicability; this is particularly restrictive in the case of
atmosphere entry.

The various proposed schemes employing this concept for atmosphere reentry
have, in general, demonstrated an ability to guide to ranges of approximately
6,000 miles or less. Theoretically, the proposal of reference 6 to store mul-
tiple nominal trajectories and associated feedback gains should provide accu-
rate guidance to any range, limited only by the storage capacity of the
guidance computer. The on-board computer is subject to limitations on size,
weight, and power requirements. These restrictions usually result in limita-
tions on computer speed and information storage capacity, which, in turn, place
a premium on guidance scheme simplicity.

The purpose of the present investigation was to determine if the guidance
of a lunar mission type capsule to ranges of the order of one-half the earth's
circumference could be accomplished by means of the nominal trajectory guidance
concept. In the interests of simplicity, a single nominal trajectory was to be
used. The results presented show that with relatively small modifications to
the classical linear theory solution, it is possible to meet these objectives.

NOTATION
A aerodynamic acceleration, g units
Fg linear theory gain for the o state variable used to determine the
magnitude of the control variable n, dimensions of &

(See appendix A.)
g surface gravity, ft/sec?®
h altitude, ft

Kps Kn empirical dimensionless weighting factors

% lift -drag ratio, dimensionless

m mass, lb-sec2/ft

r re + h, Tt

To earth radius, ft

5 vehicle reference area

t time, sec

u external force variable (See appendix A.)

o=




XTG
X,Y,Z

total velocity

downrange

' crossrange

range to go, Xf - X

inertial axis system positive north, east, and radially outward
(See fig. 10.)

derivative with respect to independent variable
flight -path angle (see fig. 10), deg

difference between actual and reference value of any quantity,

()"()r

§i> adjoint variable

S,

-angle of latitude, deg

heading angle (seé fig., 10), deg
angle of longitude, deg

product of universal gravitational constant and mass of planet,
££° [sec®

atmospheric density decay parameter, 1/ft

atmospheric density, lb-sec2/ft*

Subscripts

final

initial

horizontal component
summing index
reference or nominal

vertical component



DEVELOPMENT OF GUIDANCE SYSTEM CONTROL EQUATION

Basic Control Equation

The basic form of the control equation determined by linear perturbation
theory is given in appendix A by equation (All) as;

up(v) = up.(v) + }: Fii(v)ﬁxm(v) (1)
M

Equation (1) is applicable to the control of any number of quantities in
three dimensions, restricted only by the simplifying assumption made in appen-
dix A that the number of control variables is equal to the number of quantities
to be controlled. The following specific guidance system is developed on the
basis of a two-dimensional (altitude, downrange) analysis for a typical lunar
mission type capsule. The quantity to be controlled is the final range. It is
shown in sppendix B that, as a result of the limited crossrange capability of
this type of vehicle, the results obtained are valid for application in three
dimensions.

As formulated in appendix A, equation (1) defines a specific mode of
control but does not define what dependent and independent variaebles are to be
used. The choice of variables end the modifications made to equation (1) are
discussed below.

Choice of Variables

Insofar as the theory is concerned, the particular set of state variables
(altitude, range, etc.) and the independent variable (time or s state variable)
chosen is completely arbitrary. There are practical reasons for choosing a
state variable rather than time as the independent variable in order to reduce
M 1in equation (1) by one, thus simplifying the guidance equations and reducing
the computer storage requirements. In the present investigation, total veloc-
ity was chosen as the independent variable. This choice is not new (see, €.g.,
refs. 1, 2, and 4) and was made in the present investigation because of the
simplification Jjust noted, and because it appears that it has certain addi-
tional advantages. One of the advantages may be visuslized by considering the
consequences of using time as independent variable. The total time required to
complete an atmosphere reentry depends almost directly on the total range tra-
versed. Now the actual state variable values and those on the reference tra-
Jectory are compared (the Oxy Of eq. (1)) at each value of the independent
variable. Therefore, in order that a reference trajectory veariable be avail-
able for guidance purposes, no trajectory which requires more time to complete
than the reference trajectory may be considered. In practice this requires the
reference trajectory to have a range equal to the greatest range desired
(ref. 5). A little thought will convince the reader that, for ranges which are
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appreciably shorter than the reference value, severe mismatching of the state
variables will occur. That is, the region of valid lineerization will have
been exceeded, and the linear theory will not provide acceptable guldance.

Unlike time, the total change in velocity which occurs during reentry is
independent of the total range traversed. Thus the reference trajectory can be
chosen to represent the mean of the range of desired conditions, thus minimiz-
ing the mismatching of the state variables. Obviously, the advantage of using
an independent variable for which the B8x, of equation (1) are minimized is
that less modification to the linear theory 1s required to make it operate over
the range of conditions desired.

At the present time there is no clear indication of the superiority of one
set of dependent variables over another. In the present investigation, vari-
ables were chosen which would be readily available from an lnertial system on
board the vehicle, and which did not have obvious disadvantages such as the
altitude errors associated with such & system. The state variables chosen were
altitude rate, h, serodynamic acceleration, A, and range to go, xpga. The con-
trol variable, the ratio of the vertical component of 1lift to drag, Ly/D, was
used to control the final range xf. With these choices, the control equation
determined by the linear theory is given by equation (B10) as

(E;’Q(V) - (%}r(V) + F(V)8R(V) + Fp(V)BA(V) - Fx(V)oxpa(V) (2)
Mode of Control

As formulated, the system defined by equation (2) attempts to use minimum
control excursion for a maximum length of time: If the information possessed
by the system is correct in the sense that the effects of all pertinent quan-
tities have been accounted for, and if the system is in the neighborhood of the
nominal trajectory where linearization of the equations is valid, equation (2)
will command a control increment just sufficlient to drive the range error to
zero at V = Vg,

Another formulation, used in reference 4, is to command the maximum
avallable control excursion for a minimum amount of time. However, it was
found that (when attempting to operate far outside the region wherein lineari-
zation is valid) this mode of control tended to cause erroneous trajectory
excursions from which it was impossible to recover, and so was not satisfactory

The mode of control finally used was intermediate to these two extremes;
the guidance gains were adjusted through the use of empirically determined
weighting factors as will be described subsequently.




Reference Trajectory

The altitude-range characteristics of the reference trajectory chosen for
this study asre shown in figure 1. Several factors were considered in the
choice of this trajectory. It was desired that the range capability of the
guidance system be sufficient to return at any time from a lunar mission to a
single given earth site, which requires ranges as great as 12,500 statute
miles. A 6,000 mile nominal trajectory was chosen since 1t is approximstely in
the center of the desired range envelope. A high skip type of trajectory was
chosen because both the total heat load incurred and the sensitivity of the
final range to state variable errors are lower than for trajectories which have
relatively low skip altitudes.

Also shown in figure 1 are the trajectory state variables used in the
control equation (2), plotted as a function of the independent variable, veloc-
ity. It can be seen in this figure that velocity was double valued during both
the initial plunge into the atmosphere and during the resulting skip. Although
this characteristic of the independent variable could be accounted for by the
appropriate logic, in the interests of simplification the velocity variation
was assumed to be monotonic. As a result of this assumption, the guidance sys-
tem operated with erroneous values of the state variables at both initial
velocity and near satellite velocity. Nevertheless, acceptable guidance was
obtained with the gain modificstions to be described.

Guidance Gains and Emplricel Welghting Factors

The linear theory guidance gains associated with the chosen state
variables are presented in figure 2. The large value of the gains at the low-
est velocity shown 1s a consequence of the approach of the terminal conditions
and thé loss of vehicle kinetic energy. The large values which occur near sat-
ellite velocity are due to the high skip nature of the reference trajectory.
The modification to the gains used in the present analysis are indicated by the
dashed lines. The gains at the lowest value of velocity were limited to pre-
vent excessive terminal maneuvering. The other limits shown on the gains asso-
ciated with altitude rate and aerodynamic acceleration were necessary in order
that the velocity variation could be assumed monotonic and, in addition,
served to de-emphasize the erroneous state variable values resulting from the
same assumption.

It was noted earlier in the report that the purpose of this investigation
was to determine the feasibility of guiding to ranges of approximstely one-
half the earth's circumference, using but a single nominal trajectory. The
basic vehicle has the capability, if guided properly, of attaining the ranges
desired for a band of reentry angles without vioclating certain constraints
usually applied for the purpose of insuring mission safety. These reentry
angle limits determine what will be called the vehicle capability limits.
Because  of the sizable departures from the nominal trajectory required to real-
ize such a capability, it would not be expected that the linear theory results
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would be sufficient. The question to be answered then was whether the linear
theory geins could be modified to accomplish the desired guldance results and,
if so, how complex & modificetion was required. It was found that the desired
guldance results could be obtained through modification of the linear theory
gains by means of the weighting factors shown in figure 3. The weighting fac-
tors were applied to altitude rate and aerodynamic acceleration, were functions
of the final range desired at the time of initisl reentry, and assumed the
values shown by the appropriate curves depending on whether veloclty was
greater or less than 25,000 feet per second.

Welghting factors expressed as a function of these two variables, total
range and velocity, were the simplest which could be found that were able to
extend the capability of the linear theory guldance system to the point where
it approached the vehicle capability limits. The welghting factors shown do
enable the system to approach this capability, and were determined by the sim-
ple process of finding the gradient of the range error in the coordinates of
altitude rate and aerodynamic acceleration gains, and varying the gains in the
proper manner to decrease the error until the vehicle capability limit was
reached, or until a minimum was reached. The combination of weighting factors
shown in figure 3 1s not unique; other combinations were found which also per-
mitted the guidance cepability to approach vehicle capebility. Thus no opti-
mum set of weighting factors exists. In an actual application, additional
constraints not considered in this investigation would sufficiently define the
problem such that an optimum set of factors could be determined. The important
result to be noted from this investigation is that virtually full vehicle capa-
bility can be utilized by the linear theory guidance system when augmented by
these simple means.

The final form of the control equation is given by equation (3).

B - (—L,%) b KV, %) T (V) BB(T) + Ky(V,xg)FA(VIBA(Y) - Fy(V) S (V)
(3)

This control equation, utilizing the functions presented in figures 1, 2, and
3, was used to obtain all the results present in the following sections.

GUIDANCE CAPABILITY
Standard Conditions
The trajectory shape, aserodynamic acceleration, and control action are
illustrated in figure 4 for two guided trajectories of 6,000 mile range. These
two trajectories are for initial flight-path angles closely corresponding to
the extremes permitted by the vehicle's capability, namely the uncontrolled
skip boundary and the maximum accelerstion boundary.

The uncontrolled skip boundary is defined as the shallowest reentry angle
for which the vehicle can acquire sufficient aerodynamic force so that the
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trajectory can be controlled to any desired range. For the vehicle considered
in this study the boundary is 74 = -4.,7°. The trajectory presented in fig-
ure 4(a) is close to this boundary, and illustrates the negative 1lift necessary
to restrict the range to the desired 6,000 miles. The 0.1° difference in entry
angle from the uncontrolled skip boundary was maintained as the shallowest
reentry angle for all results presented because of the extremely critical
nature of trajectory control as the boundary is approached.

The maximum acceleration boundary is defined as the steepest reentry angle
for which the vehicle is capable of preventing the acceleration from exceeding
the maximum desired. For the 10g limit chosen for thils study, the boundary is
7{ = =7.3°. The reentry angle for the trajectory shown in figure 4(b) 1is on
this boundary, as can be seen from the initial peak of the trace of aerodynamic
acceleration. It can also be seen that full positive 1lift was used over most
of the trajectory, indicating that another vehicle capebility boundary has been
approached, the maximum renge boundary.

These three boundaries, which delineate the capability of the vehicle, are
shown in figure 5 as a function of the final range. Also shown are symbols
which represent guided trajectories calculated to determine the guidance capa-
bility. All points within the shaded region of figure 5, as well as for all
date to be presented subsequently, represent a terminal range error equal to or
less than #10 miles. It can be seen that within these error limits the guld-
ance system is capable of operating over virtually the entire corridor defined
by the vehicle itself.

Off-Design Conditions

An item of significant interest in the evaluation of a guldance system is
its ability to handle off-design conditions. Three types of off-design condi-
tions were considered in this study:

(1) Reentry from sbort conditions
(2) Changes of vehicle Ly/D
(3) Changes of atmospheric density from 1959 ARDC standard

The abort conditions considered were reentries from circular orbit and
reentries at a velocity of 32,000 feet per second. The two reentry conditions
shown in figure 6(a) were initiated from a circular orbit at an altitude of
600,000 feet with two different values of retrothrust impulse. The trajec-
tories are shown for each reentry condition; maximum range capability
(Iv/D = 0.4) of the vehicle, maximum guided range, and minimum guided range
determined by the 10g limit. The latter two trajectories define the guidance
capability. These results show that the thrust applied in orbit to initiate
reentry must be used as the primary range control in this type of abort situa-
tion: They also show, however, that the guidance system is capable of utiliz-
ing almost the full vehicle capability.
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The trajectories bounding the guidance capability for reentries at a
velocity of 32,000 feet per second are shown in figure 6(b). At this velocity
and at the shallow reentry angle shown, the vehicle has the capability of
global range, whereas the guidance system provides only 7,500 miles of that
capability. At the steeper angle, the guidance is able to utilize almost full
vehicle capability.

The Lv/D variations considered in this investigation were 5 percent
above and below the desired value. That 1is, the actusal LV/D of the vehicle
was always 5 percent above or below the value commanded by equation (3). The
effect on trajectory shape i1s shown in figure 7 for reentry at a steep angle.
The effects at shallow angles were much less pronounced.

The density change from the 1959 ARDC atmosphere used as the standard
atmosphere in this study varied linearly from zero at 100,000 feet to +50 per-
cent at 400,000 feet altitude. The effects of this deviation on trajectory
shape are illustrated in figure 8.

A sumary of the effects of these off-design conditions on guldance
cepability at various ranges is presented in figure 9. Also shown is the
information regarding vehicle and guldance cepability under standard conditions
previously presented in figure 5. The symbols indicate the effects of Lv/D
and density varilations considered separately. The effects of these off-design
conditions on the vehicle capability boundaries were small and are not shown.
It can be seen that the LV/D variastions affected the guldance capability
relatively little. The density changes, however, caused a sizable loss in
guldance capability at long ranges. It is anticipated that inclusion of a com-
ponent in the control equation sensitive to density changes (the adaptive fea-
ture of ref. 6) will make a marked improvement in the guidance capability at
long ranges. Another possibility for the improvement of the long range guld-
ance capability in the presence of atmosphere deviations may be the use of a
different set of weighting factors.

SUMMARY OF RESUII'S

In this study a modified perturbation theory has been applied to the
problem of earth reentry guidance. It has been shown that if velocity is used
as the independent variasble in the control equation and if the linear theory
gains are appropriately weighted, then one reference trajectory can be used
successfully in spite of large errors in nominal or initial conditions. The
use of a single reference trajectory means that the guidance method requires
little storage capacity.

It was found that with a single reference trajectory it was possible to
obtain guidance for ranges from 1,500 to 12,000 miles over virtually all entry
conditions within the vehicle's capability.

For the abort conditions considered in the paper, the guidance system
generally was able to make almost full use of the vehicle's range capability.
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Errors in vehicle ILy/D considered had little effect on the capability
of the guidance scheme.

Density variations considered in this study affected the long range
guidance but had little effect on guidance capability for ranges less than

6,000 miles.
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APPENDIX A
BASIC EQUATION USED IN LINEAR PERTURBATION GUIDANCE

Developments similar to that in this appendix may be found in the
literature (e.g., ref. 7). Consider the set of nonlinear differential equa-
tions

Xm = Fm(xn:up:v) _ (A1)
where L S n <M

F =M known functions

x =M state variables
u =P external force variables
v = independent variable (such as time, velocity, ete.)

Expanding equation (Al) in a Taylor series about some desired nominal or
reference trajectory and retaining only terms to first order gives

8% - 2 amndXn = Z ppdUp (A2)
P

M

This is a set of M linear differential equations with varying coefficients
amn(v) and bmp(v), the solution of which describes the motion about the
reference trajectory, where

8xn(v)

xun(v) = @—if)rm

bup(v) = (5%1 ™)

xn(v) - xnr(V)

The set of equations adjoint to equation (A2) is defined by

M
<11~



Multiplying equation (A2) by Ny, equation (A3) by &xy, summing over M and
integrating over the interval v to vf (vy < v < vr) glves

2 AmS%Xm = Z Md%m |+ f szz DyrpMmBUp &V (Ak)
s, Y WP

M M
This is the basic equation for control about a reference condition, and was
called by Bliss (ref. 8) the fundamental formula. Equation (AL) may be partic-
ularized by identifying the single sum at v = vy with the state variable
Xq, which it is desired to control (1 £ ¢ < M). Thus, identify

ve

E: Amdxm = Bxq ‘v (A5)
M ve 3
Then
Km‘ = gfg (A6)
Ve Xm vp

To indicate the proper partial derivative, the following notation has been
introduced in the literature. Equation (A6) is written

X ox
Ne(ve) = 52 (A7)
m vf
Equation (A7) defines the boundary conditions necessary for the solution
X
Xx%(v) of equation (A3). Eguation (Al) may now be written
X vy X
dxq(ve) = }: %xg(v)Sxm(v)-+ d[ }; E: meAXESuP avy (A8)
M V. M P

Equation (A8) is the basic equation by means of which an estimate can be made
of the first-order change B&xq of the state variable xq from its reference
value at the final condition “vg, due to (a) a change B8&xy of any state vari-
able xpy from its reference value at a prior condition v, and (b) a change
Sup of any external force variable up from its reference value during the
interval v to vr.

For simplicity, consider u, to be control variables, and assume the
number q of state variables it is desired to control is equal to the number
P of control variables. Then, given a desired final value 6xq(Vf) and given
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certain departures ®xy(v), there is an infinity of control variable functions
vwhich will accomplish the desired final value. In particular, there is a con-
stant value B8up over the interval v < vy < v which will accomplish the
desired final value, and, with the notation

Xq _ Vf y Xq
Iup(V) = £ /, bmp7\xm avy (A9)
M

equation (A8) may be written

3xq(vye) = Z ki%(v)Sxm(v) + Z Iﬁg(v)Sup (A10)
M P '

Solution of equation (A10) for the control varisables up then gives

up(r) = g (v) + ) F(r)e(v) (a12)
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APPENDIX B
DEVELOPMENT OF SPECIFIC CONTROL EQUATION

In this appendix it first will be demonstrated that to first order the
two-dimensional results presented in this study are valid for three-dimensional
applications. The equations of motion used were

3

h=Vsiny
. s _TeVcos ycos§
X =TV = T cos A
. Ly v 1l u
y = — 4+ —COS y ~ = == COS 7
mv o r V r2 $ (B1)
YRRSRNE VRN X
V=- el sin
In 1 v
§_W€£—7-;tan/\.cosycos§
. ¢ Te
Yy =reh =—Vcos y sin 4 )

vhere the geometry 1s shown in ske+~h (a), The assumptions made in the
development were:

(e) Cp
(b) Cr,
(¢c) Planar reference trajectory

y 4
constant

constant

With these assumptions the control
variable may be considered to be the

r vertical component of 1ift, and the
coefficients of the perturbation equa-
tion (A2) are found to be, for those
which are other than zero,

/>
<

813 = Vy COS 71

INITIAL | .
POINT INITIAL TRAJECTORY a14 = sin 7y
/ PLANE

X ap1 = -(rgVy cos 7p)/Tr®

Sketch (a) aza = -(roVy sin yyp)/ry

~1h-




824

a3y

833 =

234

84,

843

844

I+

as3

'.’.'5.54

(re cos yy) fry

CDS Lv 2 1
-5 e (5 —v——

1y W
Vy 702 ° rr> sin 7,

@D,

f\)l'm

sin
( I'r rr2 Ty

- 'EE CO8 7y
rr

/c
..prVr (;%?i
B CpS _ 1 LV _(Ww§
¥3 PpVy <_m—> cos 7. /(ﬁ) '<D>r

@ (TG
B cos®
CpS 1 <£>2 ) <&>2
m / cos 7y D D/,
\2
- rrze cos 7.
r

e
— Vy cos 7
r.

fry (C_ﬁs_

r
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®),
[EF-G5)

where the * s8igns indicate the possibility of a left or right orientation of
the horizontal component of 1ift. Then equations (A2) and (A3) become

Pr Cps 1
tbsy = ¥'2—Vr<m cos 7,

dh 0 o} a13 814 0 0 dh 0
63.( 821 0 823 8p4 0 0 ox 0
4 a 0 a 8 0 0 & b
| = 31 33 34 4 + 31 [B(LV/D)]
o)l 241 0 843 844 0 0 ov 0
8¢ tas; O fass *ase O  ase 8¢ tbs;
8y 0 0 0 0 8es 0 sy o
. ) . S R S L. -—
(B2)
) 8 Ut
AL 0 az1 as) a41 tasy 0 M
Ao 0 0 0 0 0 0 Ao
s - | 813 823 ass 843 +as3 0 A3
.V R - P 8p4 asg a44 +as4 0 A (B3)
).\5 0 O O O O 5-65 )\5
e 0 0 0 0 ase 0

and equation (Al) becomes:
[MaBh + AoBx + AaBy + AaBV + AsBL + Aely Jg
= [A18h + Aodx + Aady + AadV + AsdL + Neby Iy

te
+ f (Aabay * Asbsy)d(Ly/D)dty (B4)
t

It is desired to control the final downrange, x, and crossrange, y. By the
strict identity (A5), the left side of equation (B4) will equal the downrange
change at the final value of the independent varisble if

t = t¢ (B5)



A slightly different formulation holds if the stopping condition is other than
the independent variable acquiring some specified value (see, e.g., refs. 7 or
8). 1In the present type of problem the results are not significantly differ-
ent. In the notation of equation (A7), equations (B5) are

=7\§=)\’g=7\;,‘=o

t =ty (B6)
=1

Solving equations (B3) using the boundary conditions (B6) gives the values for
all t. By inspection

7\’§‘=7~§,‘=o

N for all t (B7)
M o= 1

That is, to first order, there is no effect of heading angle, {, or crossrange,
¥, on the downrange, x. This result is true only for a planar trajectory, a
restriction approximately fulfilled as a result of the nature of the vehicle
considered in this paper; the strictly two-dimensional results presented should
then remain valid if extended to a full three-dimensional investigation.

Fquation (B4) now may be written -
x x X by
sx(tf) = [Ahdh + 8x + Nydy + NyoV], + K7b318(Lv/D)dt1 (B8)
t

Transformation to any independent variable and combination of state
variables is a simple matter. As noted in the text, velocity was chosen as the
independent variable, and altitude rate, h, aerodynamic acceleration, A, and
range, X, were the state varisbles chosen. With these variables, equation (B8)
becomes

Ve
exp = 5x(Ve) = [Aish +8x + AyBAly +f Ayba318(Ly/D)dVy (B9)
s

and equation (All) becomes

Ly . Ly e
C%) = <—ﬁ-> + FﬁSh + FA6A + FX(SX - BXf) = <T> + thh + FASA - FXBXTG
r r

(B10)
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where

1
Fx = Ix
Ly/D
X
P, = — A
A~ X
Ly/D
X
Fo _ xh
h X
TL,/D

and the superscript has been left off the F functions because of the single
control variable.
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